

De-regressing MACE versus domestic EBV for Genomics

P.G. Sullivan, J. Jamrozik & G.J. Kistemaker Canadian Dairy Network

What is de-regression?

Reversing the BLUP regression of \hat{g} (EBV) towards parent average (PA)... How?

>Scale \hat{m} to increase V(\hat{m})

$$\hat{g} = PA + \hat{m}$$

$$DRP = PA + \frac{\hat{m}}{REL_{EDC}}$$

$$V(DRP) > V(\hat{g})$$

$$V(DRP) = V(y) ???$$

- With our approximations, did we apply the correct scaling with ^m/<sub>REL_{EDC}
 ?
 </sub>
- **1. Were EDC approximated correctly?** $REL_{EDC} = f(EDC_{bull})$
- 2. What about EDC of parents? $REL_{\hat{m}} = f(EDC_{bull}, EDC_{sire}, EDC_{dam})$ $\hat{\sigma}_m^2 = \sum \hat{m}^2 / \sum REL_{\hat{m}}$

- **3.** Complications transforming MT to ST?
 - MTEDC of bull versus bull+sire+dam?
 - > Is $REL_{\hat{m}}$ the same from correlated traits?

$REL_{\hat{m}}$ from correlated traits

Given a set of: REL_{bull} , REL_{sire} , REL_{dam} Is $REL_{\hat{m}}$ the same for any data source?

Tested with a 2-trait x 3-animal MME:

Data Set	Domestic data			Foreign (corr'd) data		
	Bull	Sire	Dam	Bull	Sire	Dam
Domestic (D)	#	#	#	-	-	-
Foreign Low (L)	-	#	-	##	-	##
Foreign High (H)	-	-	-	##	##	##

 $REL_{\hat{m}}$ by Data Set: H > L > D, esp. if low r_g

- **3.** Complications transforming MT to ST?
 - MTEDC of **bull** versus **bull+sire+dam**?
 - > Is $REL_{\hat{m}}$ the same from correlated traits?

- **3.** Complications transforming MT to ST?
 - MTEDC of **bull** versus **bull+sire+dam**?
 - Is REL_m the same from correlated traits?
- 4. Can we transform from multi-trait to single-trait information TWICE ? ...

Double Transformation

mt = multi-trait EBV
st = single-trait EBV

mc = multi-country EBV
sc = single-country EBV

- Probably not... V(SNP) usually too high \rightarrow MT \rightarrow ST and REL_{EDC} vs $REL_{\hat{m}}$
- Young bulls affected more than proven
 Inaccurate comparisons between top young vs proven bulls
- Larger errors for Foreign bulls

Inaccurate comparisons between top foreign vs domestic bulls, both young and proven

Heterogeneous V(DRP)

 Genomic model does not distinguish between domestic versus foreign reference bulls

i.e. model assumes MACE proof = Domestic proof

- **Estimate:** $\sigma_m^2 = f(\hat{m}, REL_{\hat{m}})$
 - 1. From DRP of MACE bulls (double-transform.)
 - 2. From DRP of DOMESTIC bulls (single-transform.)
- Update scaling of *m̂* for MACE bulls to match scaling of DOMESTIC bulls
 - REML estimates account for Rel'y of bull and parents
 - Scaling more consistent for MACE vs DOMESTIC

MACE vs Domestic Data (SD estimates Dec 2014)

Ratio of Mendelian Sampling SD (MACE/DOM) (higher if data are from the correlated country-trait)

Correlated vs Direct Trait (Expected SD bias given $REL_{\hat{m}}$)

Ratio of Mendelian Sampling SD (MACE/DOM) (higher if data are from the correlated trait)

Genomic Validation (Domestic Bulls with 2014 EBV)

	No Adjustment		Variance Adjustment		
	Slope of Prediction (2010 GPA → 2014 EBV)				
GLPI (~N(0,1))	0.93		0.97		
GLPI_PROD	0.96		1.00		
GLPI_DUR	0.94		0.99		
GLPI_HF	0.94		0.99		
	Average Difference (2010 GPA – 2014 EBV)				
	All bulls	Top 100 - All	All bulls	Top 100 - All	
GLPI (~N(0,1))	0.37	0.08	0.31	-0.02	
GLPI (~N(0,1)) GLPI_PROD	0.37 0.23	0.08 0.12	0.31 0.21	-0.02 0.04	
GLPI (~N(0,1)) GLPI_PROD GLPI_DUR	0.37 0.23 0.16	0.08 0.12 -0.01	0.31 0.21 0.11	-0.02 0.04 -0.03	

Genomic Validation (Domestic vs Foreign Bulls)

Domostio	No Adjustme	nt Variance Adjustment
Domestic	Slope of Pred	diction (2010 GPA → 2014 EBV)
GLPI (~N(0,1))	0.93	0.97
GLPI_PROD	0.96	1.00
GLPI_DUR	0.94	0.99
GLPI_HF	0.94	0.99

Variance adjustment to DRP

Réseau laitier canadien

Genomic Validation (Domestic vs Foreign Bulls)

Domostio	No Adjustment	Variance Adjustment	
Domestic	Slope of Prediction	on (2010 GPA → 2014 EBV)	
GLPI (~N(0,1))	0.93	0.97	
GLPI_PROD	0.96	1.00	
GLPI_DUR	0.94	0.99	
GLPI_HF	0.94	0.99	
	No Adjustment	Variance Adjustment	
Foreign	Slope of Predictio	n (2010 GPA → 2014 MACE)	
GLPI (~N(0,1))	0.86	0.90	
GLPI_PROD	0.96	1.00	
GLPI_DUR	0.83	0.88	
GLPI_HF	0.91	0.97	
Variance adjustment to DRP			

Genomic Validation

(Domestic 2014 by proof type in 2010)

LPI ~N(0,1)	No Adjustment		Variance Adjustment		
Bull/Proof Type	All bulls	Тор 100	All bulls	Тор 100	
2010 DGV	Average Difference (2010 DGV – 2014 EBV)				
Domestic (DGV)	-0.02	0.12	0.00	0.06	
Foreign (DGV)	0.23	0.30	0.10	0.15	
Young (DGV)	0.29	0.68	0.21	0.50	
2010 GEBV	Average Difference (2010 GEBV – 2014 EBV)				
Domestic (GEBV)	0.00	0.09	0.00	0.03	
Foreign (GMACE)	0.23	0.32	0.21	0.27	
Young (GPA)	0.37	0.45	0.31	0.29	

Genomic Validation

(Domestic 2014 by proof type in 2010)

Blending: DGV+EBV

LPI ~N(0,1)	No Adjustment		Variance Adjustment		
Bull/Proof Type	All bulls	Тор 100	All bulls	Тор 100	
2010 DGV	Average Difference (2010 DGV – 2014 EBV)				
Domestic (DGV)	-0.02	0.12	0.00	0.06	
Foreign (DGV)	0.23	0.30	0.10	0.15	
Young (DGV)	0.29	0.68	0.21	0.50	
2010 GEBV Average Difference (2010 GEBV – 2014 EBV)					
Domestic (GEBV)	0.00	0.09	0.00	0.03	
Foreign (GMACE)	0.23	0.32	0.21	0.27	
Young (GPA)	0.37	0.45	0.31	0.29	

Variance adjustment to DRP

Slopes of Prediction (2010 GPA→ 2014 EBV)

Slopes of prediction (Dec 2014 EBV from 2010 genomic PA / DGV)

- Variance adjustment to de-regressed MACE proofs reduced V(GEBV) for foreign bulls
 - Improved SNP estimates and GEBV for ALL bulls
 - Genomic validation results improved for Domestic and Foreign bulls, for both DGV and official GPA
 - Slopes of predicting both EBV and MACE closer to 1
 - Implemented in April 2015
- Slopes of prediction for DGV still below 1 for nearly all traits

Lower slopes for low reliability traits from MT models

- Slopes of prediction much better for GEBV
 CAN averaging of DGV and EBV is still helpful
- Addressed multi-country correlated data
- Can we also address correlated data from multi-trait domestic systems?
 - > e.g. Adjust variance of DRP for DOMESTIC bulls, to account for higher $REL_{\hat{m}}$ when mainly correlated trait information?

- De-regression is a variance-scaling of \hat{m}
- Single-trait genomic evaluation assumes single-trait EBV as input to de-regression
- Multi-trait EBV should have a different variance-scaling of \hat{m} especially if:
 - EBV reliability is low and mainly from correlated traits
 - Genetic correlations in multi-trait model are low, e.g.
 - Time-dependent traits (e.g. Fertility and Survival)
 - Foreign bulls in the reference population

Truncated data were official MACE from 2010 vs. domestic EBV by re-running 2010 data through current programs

> Can we do better with truncated MACE?

- 4 years of changes to models and data (from any country) not in 2010 MACE ... Lowers r_q
- Variance adjustment helps but cannot completely correct this problem

Truncated MACE runs by Interbull could improve genomic validation test results

