Differences between revisions 5 and 25 (spanning 20 versions)
Revision 5 as of 2012-10-16 13:01:33
Size: 12681
Editor: Valentina
Comment:
Revision 25 as of 2019-10-31 09:49:39
Size: 18613
Editor: Valentina
Comment:
Deletions are marked like this. Additions are marked like this.
Line 5: Line 5:
Line 7: Line 6:
Estimation of genetic correlations among countries takes place in test-runs and only when new or

modified data are submitted from a country, according to the following procedure (as per Interbull

technical workshop of January 2004, Uppsala, Sweden):
Estimation of genetic correlations among countries takes place in test-runs and only when new or modified data are submitted from a country, according to the following procedure (as per Interbull technical workshop of January 2004, Uppsala, Sweden):
Line 14: Line 9:
Data for estimation of genetic correlations are de-regressed breeding values for all AI bulls that have

daughters in at least 10 herds. For mastitis and calving traits an additional requirement is that bulls

have at least 50 daughters.

Correlations are estimated using the software package developed at Holstein Association USA (Klei

& Weigel, 1998). Correlations are estimated simultaneously for all countries, except for Holstein,

where subsets of 7 countries are considered. Countries are grouped into triplets, and per analysis

correlations are estimated for countries in two triplets and the USA as link provider. Genetic

correlation estimates for all country pairs are obtained by considering all possible combinations of

triplets.

For each analysis only records from common bulls and bulls belonging to ¾-sib families with

evaluations in multiple countries are used. Pedigree information is traced back until 1970; parents of

ancestors born before 1970 are treated as missing and assigned to phantom parent groups. Phantom

parent groups are defined according to origin, birth year of the bull and path of selection. Small

groups are merged, where the first priority is given to combining birth years, and next to combining

countries of origin. Genetic groups are treated as random effects.

Starting correlations for the REML procedure are the previously used correlations, and iterations are

stopped when the relative change for all λ = Gij/√(Ri*Rj) is less than 10-6, where Gij is the sire

covariance between country i and j, and Ri and Rj the residual variance in country i and j, respectively,

or when the maximum change in correlation is less than 10-6. Aitken acceleration is used to speed up

convergence.

Due to the country subsetting for Holstein, multiple estimates are obtained for the genetic correlation

between some country pairs. The correlation matrix used in the next step (post-processing) is a

combination of matrix of the maximum and average correlation estimates, weighted such to obtain the

matrix with the highest smallest eigenvalue.
Data for estimation of genetic correlations are de-regressed breeding values for all AI bulls that have daughters in at least 10 herds. For mastitis and calving traits an additional requirement is that bulls have at least 50 daughters.

Correlations are estimated using the software package developed at Holstein Association USA (Klei & Weigel, 1998). Correlations are estimated simultaneously for all countries, except for Holstein, where subsets of 7 countries are considered. Countries are grouped into triplets, and per analysis correlations are estimated for countries in two triplets and the USA as link provider. Genetic correlation estimates for all country pairs are obtained by considering all possible combinations of triplets.

For each analysis only records from common bulls and bulls belonging to ¾-sib families with evaluations in multiple countries are used. Pedigree information is traced back until 1970; parents of ancestors born before 1970 are treated as missing and assigned to phantom parent groups. Phantom parent groups are defined according to origin, birth year of the bull and path of selection. Small groups are merged, where the first priority is given to combining birth years, and next to combining countries of origin. Genetic groups are treated as random effects.

Starting correlations for the REML procedure are the previously used correlations, and iterations are stopped when the relative change for all λ = Gij/√(Ri*Rj) is less than 10-6, where Gij is the sire covariance between country i and j, and Ri and Rj the residual variance in country i and j, respectively, or when the maximum change in correlation is less than 10-6. Aitken acceleration is used to speed up convergence.

Due to the country subsetting for Holstein, multiple estimates are obtained for the genetic correlation between some country pairs. The correlation matrix used in the next step (post-processing) is a combination of matrix of the maximum and average correlation estimates, weighted such to obtain the matrix with the highest smallest eigenvalue.
Line 63: Line 20:
The following information sources are considered:

a) the correlation estimate from step 1

b) the correlation used in the previous run.

c) own expectations

d) correlations from Holsteins (only for non-Holstein breeds)

1) Estimates are required to fall within certain windows. For milk production traits, separate windows

are maintained depending on the climate and whether or not countries predominantly have grazing

system. Two countries with a similar climate and production system (grazing vs. non-grazing) are

expected to be more correlated with each other than two countries with different climate or

production system. If estimates are higher than the maximum (or lower than the minimum) value

they are set to the maximum (or minimum) value.

In addition, estimates are regressed towards a mean correlation within groups, the regression

depending on the number of common bulls. Trait specific parameters are given below.

2) For breeds other than Holstein, and for some traits (production and udder health), estimates are

combined with genetic correlations for Holstein. The approach to follow is similar to the one for

Red Dairy Cattle conformation.

3) The two values (i.e. results from the preceding steps and the previously used correlations) are

combined into a weighted average to avoid large changes in correlations between consecutive testruns.

If the national evaluations for two countries have not changed, then the genetic correlation

between these two countries is not expected to change much. However, if one of the countries

introduced changes in their national evaluations, the genetic correlation between two countries

may change. An increase in number of common bulls is expected to yield a more precise estimate

of the genetic correlation, and more weight is given to the current estimate. This is done by

increasing the weight on the current estimate proportionally to the increase in number of common

bulls.
||<tablewidth="674px" tableheight="274px" tablestyle="text-align:center"> ||Current estimate ||Previously used correlation ||
||No changes ||<style="text-align:center">1 ||<style="text-align:center">3 ||
||Minor change in at least one country (e.g.,<<BR>> data edit, pedigree improvement) ||<style="text-align:center">1 ||<style="text-align:center">1 ||
||Major change in at least one country (e.g.,<<BR>> new model or parameters) ||<style="text-align:center">1 ||<style="text-align:center">0 ||




4) Finally, the updated co)variance matrix is bended, using the bending procedure described by

Jorjani et al. (2003).
 1. The following information sources are considered:
  a. the correlation estimate from step 1
  a. the correlation used in the previous run.
  a. own expectations
  a. correlations from Holsteins (only for non-Holstein breeds)

 1. Estimates are required to fall within certain windows. For milk production traits, separate windows are maintained depending on the climate and whether or not countries predominantly have grazing system. Two countries with a similar climate and production system (grazing vs. non-grazing) are expected to be more correlated with each other than two countries with different climate or production system. If estimates are higher than the maximum (or lower than the minimum) value they are set to the maximum (or minimum) value. In addition, estimates are regressed towards a mean correlation within groups, the regression depending on the number of common bulls. Trait specific parameters are given below.
 1. For breeds other than Holstein, and for some traits (production and udder health), estimates are combined with genetic correlations for Holstein. The approach to follow is similar to the one for Red Dairy Cattle conformation.
 1. The two values (i.e. results from the preceding steps and the previously used correlations) are combined into a weighted average to avoid large changes in correlations between consecutive test runs. If the national evaluations for two countries have not changed, then the genetic correlation between these two countries is not expected to change much. However, if one of the countries introduced changes in their national evaluations, the genetic correlation between two countries may change. An increase in number of common bulls is expected to yield a more precise estimate of the genetic correlation, and more weight is given to the current estimate. This is done by increasing the weight on the current estimate proportionally to the increase in number of common bulls.
 ||<tablestyle="text-align:left"> ||Current estimate ||Previously used correlation ||
 ||No changes ||<style="text-align:center">0 ||<style="text-align:center">3 ||
 ||Minor change in at least one country (e.g., data edit, pedigree improvement) ||<style="text-align:center">1 ||<style="text-align:center">1 ||
 ||Major change in at least one country (e.g., new model or parameters) ||<style="text-align:center">2 ||<style="text-align:center">0 ||



 1. Finally, the updated co)variance matrix is bended, using the bending procedure described by Jorjani et al. (2003).
Line 131: Line 45:
1) Australia, Ireland, New Zealand (grazing)

2)
Israel (climate)

3)
Other
 1. Australia, Ireland, New Zealand (grazing)
 1. Israel (climate)
 1. Other
Line 139: Line 51:
Correlation between countries belonging to the same group: 0.85 – 0.98

Correlation between countries belonging to different groups: 0.75 – 0.90
 * Correlation between countries belonging to the same group: 0.75 – 0.99
 * Correlation between countries belonging to different groups: 0.60 – 0.99
Line 147: Line 58:
where CBij is the number of common bulls between country i and j, rGij the genetic

correlation between country i and j, and μij is either 0.92 or 0.82, depending on whether

countries i and j belong to the same or different groups, respectively.
where CBij is the number of common bulls between country i and j, rGij the genetic correlation between country i and j, and μij is either 0.92 or 0.82, depending on whether countries i and j belong to the same or different groups, respectively.
Line 157: Line 64:
No windows imposed. __OCS__

 1. AUS, NZL, IRL

 1. Other countries

correlation between countries belonging to the same group (OCS): 0.60-0.99

correlation between countries belonging to the different group (OCS): 0.55-0.99

__OUS__

 1. NZL, AUS, IRL

 1. Other countries

correlation between countries belonging to the same group (OUS): 0.70-0.99

correlation between countries belonging to the different group (OUS): 0.50-0.99

__OFL__

 1. AUS, IRL

 1. Other countries

correlation between countries belonging to the same group (OFL): 0.65-0.99

correlation between countries belonging to the different group (OFL): 0.40-0.99

__Other Conformation Traits__

 1. ALL

correlation between countries belonging to the different group and traits: 0.5-0.99

__BSW additional traits__

 1. ALL

||<tablewidth="200px">'''Breed<<BR>>''' ||'''Trait<<BR>>''' ||'''Min<<BR>>''' ||'''Max<<BR>>''' ||
||BSW ||hde ||0,75 ||0,99 ||
||BSW ||ruh ||0,5 ||0,99 ||
||BSW ||ofr ||0,76 ||0,99 ||
||BSW ||tpl ||0,88 ||0,99 ||
||BSW ||oru ||0,44 ||0,99 ||
||BSW ||rle ||0,47 ||0,99 ||
||BSW ||pwi ||0,57 ||0,99 ||
||BSW ||thp ||0,56 ||0,99 ||
||BSW ||hoq ||0,77 ||0,99 ||
||BSW ||ful ||0,30 ||0,99 ||
||BSW ||udb ||0,71 ||0,99 ||
||BSW ||tdi ||0,90 ||0,99 ||
||BSW ||tth ||0,86 ||0,99 ||


'''Udder health'''''' '''

Minimum size of phantom parent groups: 30

__Grouping of countries SCS: __

 1. Somatic Cells (SCS): Other Countries
 1. Somatic Cells (SCS): Israel (climate)
 1. Somatic Cells (SCS): Australia, Ireland, New Zealand (grazing)
  * Correlation between countries belonging to the same group (SCS): 0.80 – 0.99
  * Correlation between countries belonging to different groups (SCS): 0.75 – 0.99

__Grouping of countries MAS: __

 1. Somatic Cells (SCS): Other Countries
 1. Somatic Cells (SCS): Israel (climate)
 1. Somatic Cells (SCS): Australia, Ireland, New Zealand (grazing)
 1. Mastitis (MAS): country using real MAS data
  * Correlation between countries belonging to the same group (SCS): 0.80 – 0.99
  * Correlation between countries belonging to the same group (MAS): 0.88 – 0.99
  * Correlation between countries belonging to different groups : 0.75 – 0.99

Regression:

'''''r = (CBij · rGij + 10 · µij) /CBij + 10'''''

where CBij is the number of common bulls between country i and j, rGij the genetic correlation between country i and j, and μij is:

 * 0.92 if countries i and j belong to the same group (SCS)
 * 0.90 if countries i and j belong to the same group (MAS)
 * 0.82 if countries i and j belong to different groups (SCS)
 * 0.68 if countries i and j belong to different groups and traits

'''Longevity'''''' '''

Minimum size of phantom parent groups: 30

Grouping of countries:

 1. All

Windows:

 * Correlation between countries belonging to the same group: 0.45– 0.99
Line 161: Line 167:
Holstein prior information used for Red Dairy Cattle only.

'''Udder health'''''' '''
'''Calving'''''' '''

Minimum size of phantom parent groups: 30

Grouping of countries: __DCE__

 1. Australia (grazing)
 1. Other

correlation between countries belonging to the same group (DCE): 0.70-0.99

correlation between countries belonging to the different group (DCE): 0.70-0.99

__MCE__

 1. All

correlation between countries belonging to the same group (MCE): 0.55-0.99

__DSB__

 1. Australia (grazing)
 1. Countries with DCE information
 1. Countries with DSB information

correlation between countries belonging to the same group (DSB): 0.52-0.99

correlation between countries belonging to the different group (DSB): 0.35-0.99

__MSB__

 1. Countries with MCE information
 1. Countries with MSB information

correlation between countries belonging to the same group (MSB): 0.46-0.99

correlation between countries belonging to the different group (MSB): 0.53-0.99

Regression:

'''''r = (CBij · rGij + 10 · µij) /CBij + 10'''''

where CBij is the number of common bulls between country i and j, rGij the genetic correlation between country i and j, and μij is:

__DCE__

Correlation between countries belonging to the same group: 0.80

Correlation between countries belonging to different groups: 0.75

__MCE __

Correlation between countries belonging to the same group: 0.75

__DSB__

Correlation between countries belonging to the same group: 0.80

Correlation between countries belonging to 1 and 2: 0.60

Correlation between countries belonging to 1 and 3: 0.75

Correlation between countries belonging to 2 and 3: 0.70

__MSB__

Correlation between countries belonging to the same group: 0.75

Correlation between countries belonging to the different groups: 0.65

<<BR>>

'''Female Fertility'''''' ''' <<BR>>Minimum size of phantom parent groups: 30

Regression''' '''

'''''r = (CBij · rGij + 10 · µij) /CBij + 10'''''

Where CBij is the number of common bulls between country i and j, rGij is the genetic correlation between country i and j, and μij is the mean correlation indicated above.

'''Female Fertility Trait Grouping and Correlation Windows'''
||<tablestyle="border-collapse:collapse;mso-yfti-tbllook:1184;mso-padding-alt:0cm 3.5pt 0cm 3.5pt" tableclass="MsoNormalTable"rowstyle="mso-yfti-irow:0;mso-yfti-firstrow:yes"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''HCO''' ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''Maiden heifer’s ability to conceive''' ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''Min - Med - Max''' ||
||<rowstyle="mso-yfti-irow:1"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Group 1) Countries providing NR ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.79 - 0.89 - 0.99 ||
||<rowstyle="mso-yfti-irow:2"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Group 2) Countries providing CR ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.88 - 0.94 - 0.99 ||
||<rowstyle="mso-yfti-irow:3"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Between Group 1 and Group 2 ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.68 - 0.83 - 0.99 ||
||<rowstyle="mso-yfti-irow:4"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''CRC''' ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''Cow’s ability to recycle''' ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''Min - Med - Max''' ||
||<rowstyle="mso-yfti-irow:5"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Group 1) Countries providing CI/DO ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.87 - 0.93 - 0.99 ||
||<rowstyle="mso-yfti-irow:6"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Group 2) Countries providing CF ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.84 - 0.92 - 0.99 ||
||<rowstyle="mso-yfti-irow:7"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Group 3) Countries providing PM ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.61 - 0.80 - 0.99 ||
||<rowstyle="mso-yfti-irow:8"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Between Group 1 and Group 2 ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.72 - 0.86 - 0.99 ||
||<rowstyle="mso-yfti-irow:9"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Between Group 1 and Group 3 ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.61 - 0.80 - 0.99 ||
||<rowstyle="mso-yfti-irow:10"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Between Group 2 and Group 3 ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.60 - 0.79 - 0.99 ||
||<rowstyle="mso-yfti-irow:11"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''CC1''' ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''Cow’s ability to conceive 1''' ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''Min - Med - Max''' ||
||<rowstyle="mso-yfti-irow:12"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Group 1) Countries providing NR ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.70 - 0.84 - 0.99 ||
||<rowstyle="mso-yfti-irow:13"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Group 2) Countries providing CR ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.89 - 0.94 - 0.99 ||
||<rowstyle="mso-yfti-irow:14"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Between Group 1 and Group 2 ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.66 - 0.82 - 0.99 ||
||<rowstyle="mso-yfti-irow:15"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''CC2''' ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''Cow’s ability to conceive 2''' ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''Min - Med - Max''' ||
||<rowstyle="mso-yfti-irow:16"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Group 1) Countries providing CI/DO ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.85 - 0.90 - 0.99 ||
||<rowstyle="mso-yfti-irow:17"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Group 2) Countries providing FC/FL ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.70 - 0.85 - 0.99 ||
||<rowstyle="mso-yfti-irow:18"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Group 3) Countries providing NR ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.70 - 0.85 - 0.99 ||
||<rowstyle="mso-yfti-irow:21"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Between Group 1 and Group 2 ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.50 - 0.65 - 0.80 ||
||<rowstyle="mso-yfti-irow:22"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Between Group 1 and Group 3 ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.65 - 0.70 - 0.85 ||
||<rowstyle="mso-yfti-irow:25"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Between Group 2 and Group 3 ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.50 - 0.70 - 0.90 ||
||<rowstyle="mso-yfti-irow:31"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''INT''' ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''Cow’s measurement of interval calving-conception''' ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">'''Min - Med - Max''' ||
||<rowstyle="mso-yfti-irow:32"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Group 1) Countries providing CI/DO ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.85 - 0.92 - 0.98 ||
||<rowstyle="mso-yfti-irow:33"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Group 2) Countries providing RC ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.85 - 0.92 - 0.98 ||
||<rowstyle="mso-yfti-irow:34;mso-yfti-lastrow:yes"height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt"> ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">Between Group 1 and Group 2 ||<height="14.4pt" style="padding:0cm 3.5pt 0cm 3.5pt">0.50 - 0.65 - 0.80 ||




Fertility trait codes: interval calving-first insemination (CF), calving interval (CI), conception rate (CR), days open (DO), interval first insemination-conception (FC), interval first-last insemination (FL), number of inseminations (NI), non-return rate (NR), lactating cow's ability to start cycling (PM).

'''Workability Traits'''''' '''
Line 169: Line 286:
1) Somatic Cells (SCS): Australia, Ireland, New Zealand (grazing)

2) Somatic Cells (SCS): Israel (climate)

3) Somatic Cells (SCS): Other

4) Mastitis (MAS): Nordic countries, The Netherlands, Norway

Windows:

Correlation between countries belonging to the same group (SCS): 0.85 – 0.98

Correlation between countries belonging to the same group (MAS): 0.55 – 0.98

Correlation between countries belonging to different groups (SCS): 0.75 – 0.90

Correlation between countries belonging to different groups and traits: 0.35 – 0.85
__MSP__

 1. All

correlation between countries belonging to the same group (MSP): 0.85-0.99

__TEM__

 1. All

correlation between countries belonging to the same group (TEM): 0.70-0.99
Line 191: Line 302:
where CBij is the number of common bulls between country i and j, rGij the genetic

correlation between country i and j, and μij is:

0.92 if countries i and j belong to the same group (SCS)

0.90 if countries i and j belong to the same group (MAS)

0.82 if countries i and j belong to different groups (SCS)

0.68 if countries i and j belong to different groups and traits

'''Longevity'''''' '''

Minimum size of phantom parent groups: 30

Grouping of countries:

1) All

Windows:

Correlation between countries belonging to the same group: 0.30 – 0.98

No regression applied.

'''Calving'''''' '''

Minimum size of phantom parent groups: 30

Grouping of countries:

__DCE__

1) Australia (grazing)

2) Other

__MCE__

1) All

__DSB__

1) Australia (grazing)

2) Countries with DSB information

3) Countries with DCE information

__MSB__

1) Countries with MSB information

2) Countries with MCE information

__DCE__

Correlation between countries belonging to the same group: 0.60 – 0.98

Correlation between countries belonging to different groups: 0.50 – 0.90

__MCE__

Correlation between countries belonging to the same group: 0.55 – 0.98

__DSB__

Correlation between countries belonging to the same group: 0.60 – 0.98

Correlation between countries belonging to 1 and 2: 0.35 – 0.90

''' '''

Correlation between countries belonging to 1 and 3: 0.50 – 0.90

Correlation between countries belonging to 2 and 3: 0.45 – 0.90

__MSB__

Correlation between countries belonging to the same group: 0.55 – 0.98

Correlation between countries belonging to the different groups: 0.40 – 0.90

Regression:

'''''r = (CBij · rGij + 10 · µij) /CBij + 10'''''

where CBij is the number of common bulls between country i and j, rGij the genetic

correlation between country i and j, and μij is:

__DCE__

Correlation between countries belonging to the same group: 0.80

Correlation between countries belonging to different groups: 0.75

__MCE__

Correlation between countries belonging to the same group: 0.75

__DSB__

Correlation between countries belonging to the same group: 0.80

Correlation between countries belonging to 1 and 2: 0.60

Correlation between countries belonging to 1 and 3: 0.75

Correlation between countries belonging to 2 and 3: 0.70

__MSB__

Correlation between countries belonging to the same group: 0.75

Correlation between countries belonging to the different groups: 0.65

'''Female Fertility'''''' '''

Minimum size of phantom parent groups: 30

Regression''' '''

'''''r = (CBij · rGij + 10 · µij) /CBij + 10'''''

Where CBij is the number of common bulls between country i and j, rGij is the genetic correlation

between country i and j, and μij is the mean correlation indicated above.

'''Female Fertility Trait Grouping and Correlation Windows'''

__HCO Maiden heifer’s ability to conceive Min – Med – Max__

Group 1) CAN, DEU, DFS, NOR, POL (NR) 0.40 – 0.85 – 0.98

Group 2) CZE, FRA, USA (CR) 0.70 – 0.80 – 0.98

Between Group 1 and Group 2 (CR vs NR) 0.25 – 0.70 – 0.85

__CRC Cow’s ability to recycle__

Group 1) BEL, ESP, GBR, IRL, USA (CI/DO) 0.85 – 0.92 – 0.98

Group 2) CAN, CHE, CHR, DEU, DFS, ITA, NLD, NOR, POL (CF) 0.85 – 0.92 – 0.98

Group 3) NZL (PM) 0.85 – 0.92 – 0.98

Between Group 1 and Group 2 (CI/DO vs CF) 0.70 – 0.80 – 0.90

Between Group 1 and Group 3 (CI/DO vs PM) 0.50 – 0.65 – 0.80

Between Group 2 and Group 3 (CF vs PM) 0.50 – 0.65 – 0.80

__CC1 Cow’s ability to conceive 1__

Group 1) CAN, CHE, CHR, DEU, DFS, GBR, ITA, NLD, NOR, POL (NR) 0.60 – 0.85 – 0.98

Group 2) CZE, FRA, ISR, USA (CR) 0.70 – 0.80 – 0.98

Between Group 1 and Group 2 (CR vs NR) 0.50 – 0.75 – 0.90

__CC2 Cow’s ability to conceive 1__

Group 1) BEL, ESP, GBR, IRL, ITA, NLD, NOR, POL, USA, ZAF (CI/DO) 0.85 – 0.92 – 0.98

Group 2) CAN, DEU, DFS (FC/FL) 0.85 – 0.92 – 0.98

Group 3) CHE, CHR (NR) 0.85 – 0.92 – 0.98

Group 4) CZE, FRA, ISR (CR) 0.70 – 0.80 – 0.98

Group 5) NZL (RC) 0.85 – 0.92 – 0.98

Between Group 1 and Group 2 (CI/DO vs FC/FL) 0.70 – 0.80 – 0.90

Between Group 1 and Group 3 (CI/DO vs NR) 0.25 – 0.45 – 0.85

Between Group 1 and Group 4 (CI/DO vs CR) 0.30 – 0.60 – 0.85

Between Group 1 and Group 5 (CI/DO vs RC) 0.50 – 0.65 – 0.80

Between Group 2 and Group 3 (FC/FL vs NR) 0.25 – 0.45 – 0.85

Between Group 2 and Group 4 (FC/FL vs CR) 0.30 – 0.60 – 0.85

Between Group 2 and Group 5 (FC/FL vs RC) 0.50 – 0.65 – 0.80

Between Group 3 and Group 4 (NR vs CR) 0.50 – 0.75 – 0.90

Between Group 3 and Group 5 (NR vs RC) 0.25 – 0.45 – 0.85

Between Group 4 and Group 5 (CR vs RC) 0.30 – 0.45 – 0.85

__INT Cow’s measurement of interval calving-conception__

Group 1) BEL, CAN, DEU, DFS, ESP, GBR, IRL, ITA, NLD, NOR, POL, USA, ZAF (CI/DO) 0.85 – 0.92 – 0.98

Group 2) NZL (RC) 0.85 – 0.92 – 0.98

Between Group 1 and Group 2 (CI/DO vs RC) 0.50 – 0.65 – 0.80

'''Workability Traits'''''' '''

Minimum size of phantom parent groups: 30

Grouping of countries:

1) Milking Speed (MSP): All

2) Temperament (TEM)

Windows:

Correlation between countries belonging to the same group (MSP): 0.85 – 0.98

Correlation between countries belonging to the same group (TEM): 0.70 – 0.95

Regression:

'''''r = (CBij · rGij + 10 · µij) /CBij + 10'''''

where CBij is the number of common bulls between country i and j, rGij the genetic correlation between country i

and j, and μij is:

0.92 if countries i and j belong to the same group (MSP)

0.85 if countries i and j belong to the same group (TEM)
where CBij is the number of common bulls between country i and j, rGij the genetic correlation between country i and j, and μij is:

 * 0.92 if countries i and j belong to the same group (MSP)
 * 0.85 if countries i and j belong to the same group (TEM)

ibc_logo.jpg

Genetic correlation estimation procedure

Estimation of genetic correlations among countries takes place in test-runs and only when new or modified data are submitted from a country, according to the following procedure (as per Interbull technical workshop of January 2004, Uppsala, Sweden):

Step 1: Estimation of correlations

Data for estimation of genetic correlations are de-regressed breeding values for all AI bulls that have daughters in at least 10 herds. For mastitis and calving traits an additional requirement is that bulls have at least 50 daughters.

Correlations are estimated using the software package developed at Holstein Association USA (Klei & Weigel, 1998). Correlations are estimated simultaneously for all countries, except for Holstein, where subsets of 7 countries are considered. Countries are grouped into triplets, and per analysis correlations are estimated for countries in two triplets and the USA as link provider. Genetic correlation estimates for all country pairs are obtained by considering all possible combinations of triplets.

For each analysis only records from common bulls and bulls belonging to ¾-sib families with evaluations in multiple countries are used. Pedigree information is traced back until 1970; parents of ancestors born before 1970 are treated as missing and assigned to phantom parent groups. Phantom parent groups are defined according to origin, birth year of the bull and path of selection. Small groups are merged, where the first priority is given to combining birth years, and next to combining countries of origin. Genetic groups are treated as random effects.

Starting correlations for the REML procedure are the previously used correlations, and iterations are stopped when the relative change for all λ = Gij/√(Ri*Rj) is less than 10-6, where Gij is the sire covariance between country i and j, and Ri and Rj the residual variance in country i and j, respectively, or when the maximum change in correlation is less than 10-6. Aitken acceleration is used to speed up convergence.

Due to the country subsetting for Holstein, multiple estimates are obtained for the genetic correlation between some country pairs. The correlation matrix used in the next step (post-processing) is a combination of matrix of the maximum and average correlation estimates, weighted such to obtain the matrix with the highest smallest eigenvalue.

Step 2:Post processing

  1. The following information sources are considered:
    1. the correlation estimate from step 1
    2. the correlation used in the previous run.
    3. own expectations
    4. correlations from Holsteins (only for non-Holstein breeds)
  2. Estimates are required to fall within certain windows. For milk production traits, separate windows are maintained depending on the climate and whether or not countries predominantly have grazing system. Two countries with a similar climate and production system (grazing vs. non-grazing) are expected to be more correlated with each other than two countries with different climate or production system. If estimates are higher than the maximum (or lower than the minimum) value they are set to the maximum (or minimum) value. In addition, estimates are regressed towards a mean correlation within groups, the regression depending on the number of common bulls. Trait specific parameters are given below.
  3. For breeds other than Holstein, and for some traits (production and udder health), estimates are combined with genetic correlations for Holstein. The approach to follow is similar to the one for Red Dairy Cattle conformation.
  4. The two values (i.e. results from the preceding steps and the previously used correlations) are combined into a weighted average to avoid large changes in correlations between consecutive test runs. If the national evaluations for two countries have not changed, then the genetic correlation between these two countries is not expected to change much. However, if one of the countries introduced changes in their national evaluations, the genetic correlation between two countries may change. An increase in number of common bulls is expected to yield a more precise estimate of the genetic correlation, and more weight is given to the current estimate. This is done by increasing the weight on the current estimate proportionally to the increase in number of common bulls.

    Current estimate

    Previously used correlation

    No changes

    0

    3

    Minor change in at least one country (e.g., data edit, pedigree improvement)

    1

    1

    Major change in at least one country (e.g., new model or parameters)

    2

    0

  5. Finally, the updated co)variance matrix is bended, using the bending procedure described by Jorjani et al. (2003).

Trait specific parameters:

Production

Minimum size of phantom parent groups: 30

Grouping of countries:

  1. Australia, Ireland, New Zealand (grazing)
  2. Israel (climate)
  3. Other

Windows:

  • Correlation between countries belonging to the same group: 0.75 – 0.99
  • Correlation between countries belonging to different groups: 0.60 – 0.99

Regression:

r = (CBij · rGij + 10 · µij) /CBij + 10

where CBij is the number of common bulls between country i and j, rGij the genetic correlation between country i and j, and μij is either 0.92 or 0.82, depending on whether countries i and j belong to the same or different groups, respectively.

Conformation

Minimum size of phantom parent groups: 30

OCS

  1. AUS, NZL, IRL
  2. Other countries

correlation between countries belonging to the same group (OCS): 0.60-0.99

correlation between countries belonging to the different group (OCS): 0.55-0.99

OUS

  1. NZL, AUS, IRL
  2. Other countries

correlation between countries belonging to the same group (OUS): 0.70-0.99

correlation between countries belonging to the different group (OUS): 0.50-0.99

OFL

  1. AUS, IRL
  2. Other countries

correlation between countries belonging to the same group (OFL): 0.65-0.99

correlation between countries belonging to the different group (OFL): 0.40-0.99

Other Conformation Traits

  1. ALL

correlation between countries belonging to the different group and traits: 0.5-0.99

BSW additional traits

  1. ALL

Breed

Trait

Min

Max

BSW

hde

0,75

0,99

BSW

ruh

0,5

0,99

BSW

ofr

0,76

0,99

BSW

tpl

0,88

0,99

BSW

oru

0,44

0,99

BSW

rle

0,47

0,99

BSW

pwi

0,57

0,99

BSW

thp

0,56

0,99

BSW

hoq

0,77

0,99

BSW

ful

0,30

0,99

BSW

udb

0,71

0,99

BSW

tdi

0,90

0,99

BSW

tth

0,86

0,99

Udder health

Minimum size of phantom parent groups: 30

Grouping of countries SCS:

  1. Somatic Cells (SCS): Other Countries
  2. Somatic Cells (SCS): Israel (climate)
  3. Somatic Cells (SCS): Australia, Ireland, New Zealand (grazing)
    • Correlation between countries belonging to the same group (SCS): 0.80 – 0.99
    • Correlation between countries belonging to different groups (SCS): 0.75 – 0.99

Grouping of countries MAS:

  1. Somatic Cells (SCS): Other Countries
  2. Somatic Cells (SCS): Israel (climate)
  3. Somatic Cells (SCS): Australia, Ireland, New Zealand (grazing)
  4. Mastitis (MAS): country using real MAS data
    • Correlation between countries belonging to the same group (SCS): 0.80 – 0.99
    • Correlation between countries belonging to the same group (MAS): 0.88 – 0.99
    • Correlation between countries belonging to different groups : 0.75 – 0.99

Regression:

r = (CBij · rGij + 10 · µij) /CBij + 10

where CBij is the number of common bulls between country i and j, rGij the genetic correlation between country i and j, and μij is:

  • 0.92 if countries i and j belong to the same group (SCS)
  • 0.90 if countries i and j belong to the same group (MAS)
  • 0.82 if countries i and j belong to different groups (SCS)
  • 0.68 if countries i and j belong to different groups and traits

Longevity

Minimum size of phantom parent groups: 30

Grouping of countries:

  1. All

Windows:

  • Correlation between countries belonging to the same group: 0.45– 0.99

No regression applied.

Calving

Minimum size of phantom parent groups: 30

Grouping of countries: DCE

  1. Australia (grazing)
  2. Other

correlation between countries belonging to the same group (DCE): 0.70-0.99

correlation between countries belonging to the different group (DCE): 0.70-0.99

MCE

  1. All

correlation between countries belonging to the same group (MCE): 0.55-0.99

DSB

  1. Australia (grazing)
  2. Countries with DCE information
  3. Countries with DSB information

correlation between countries belonging to the same group (DSB): 0.52-0.99

correlation between countries belonging to the different group (DSB): 0.35-0.99

MSB

  1. Countries with MCE information
  2. Countries with MSB information

correlation between countries belonging to the same group (MSB): 0.46-0.99

correlation between countries belonging to the different group (MSB): 0.53-0.99

Regression:

r = (CBij · rGij + 10 · µij) /CBij + 10

where CBij is the number of common bulls between country i and j, rGij the genetic correlation between country i and j, and μij is:

DCE

Correlation between countries belonging to the same group: 0.80

Correlation between countries belonging to different groups: 0.75

MCE

Correlation between countries belonging to the same group: 0.75

DSB

Correlation between countries belonging to the same group: 0.80

Correlation between countries belonging to 1 and 2: 0.60

Correlation between countries belonging to 1 and 3: 0.75

Correlation between countries belonging to 2 and 3: 0.70

MSB

Correlation between countries belonging to the same group: 0.75

Correlation between countries belonging to the different groups: 0.65


Female Fertility
Minimum size of phantom parent groups: 30

Regression

r = (CBij · rGij + 10 · µij) /CBij + 10

Where CBij is the number of common bulls between country i and j, rGij is the genetic correlation between country i and j, and μij is the mean correlation indicated above.

Female Fertility Trait Grouping and Correlation Windows

HCO

Maiden heifer’s ability to conceive

Min - Med - Max

Group 1) Countries providing NR

0.79 - 0.89 - 0.99

Group 2) Countries providing CR

0.88 - 0.94 - 0.99

Between Group 1 and Group 2

0.68 - 0.83 - 0.99

CRC

Cow’s ability to recycle

Min - Med - Max

Group 1) Countries providing CI/DO

0.87 - 0.93 - 0.99

Group 2) Countries providing CF

0.84 - 0.92 - 0.99

Group 3) Countries providing PM

0.61 - 0.80 - 0.99

Between Group 1 and Group 2

0.72 - 0.86 - 0.99

Between Group 1 and Group 3

0.61 - 0.80 - 0.99

Between Group 2 and Group 3

0.60 - 0.79 - 0.99

CC1

Cow’s ability to conceive 1

Min - Med - Max

Group 1) Countries providing NR

0.70 - 0.84 - 0.99

Group 2) Countries providing CR

0.89 - 0.94 - 0.99

Between Group 1 and Group 2

0.66 - 0.82 - 0.99

CC2

Cow’s ability to conceive 2

Min - Med - Max

Group 1) Countries providing CI/DO

0.85 - 0.90 - 0.99

Group 2) Countries providing FC/FL

0.70 - 0.85 - 0.99

Group 3) Countries providing NR

0.70 - 0.85 - 0.99

Between Group 1 and Group 2

0.50 - 0.65 - 0.80

Between Group 1 and Group 3

0.65 - 0.70 - 0.85

Between Group 2 and Group 3

0.50 - 0.70 - 0.90

INT

Cow’s measurement of interval calving-conception

Min - Med - Max

Group 1) Countries providing CI/DO

0.85 - 0.92 - 0.98

Group 2) Countries providing RC

0.85 - 0.92 - 0.98

Between Group 1 and Group 2

0.50 - 0.65 - 0.80

Fertility trait codes: interval calving-first insemination (CF), calving interval (CI), conception rate (CR), days open (DO), interval first insemination-conception (FC), interval first-last insemination (FL), number of inseminations (NI), non-return rate (NR), lactating cow's ability to start cycling (PM).

Workability Traits

Minimum size of phantom parent groups: 30

Grouping of countries:

MSP

  1. All

correlation between countries belonging to the same group (MSP): 0.85-0.99

TEM

  1. All

correlation between countries belonging to the same group (TEM): 0.70-0.99

Regression:

r = (CBij · rGij + 10 · µij) /CBij + 10

where CBij is the number of common bulls between country i and j, rGij the genetic correlation between country i and j, and μij is:

  • 0.92 if countries i and j belong to the same group (MSP)
  • 0.85 if countries i and j belong to the same group (TEM)

public/rG procedure (last edited 2021-01-26 12:07:19 by Valentina)